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1 Given that 5 is an eigenvalue of the matrix

A =  5 −3 0
1 2 1

−1 3 4

 ,

find a corresponding eigenvector. [2]

Hence find an eigenvalue and a corresponding eigenvector of the matrixA + A2. [2]

2 By considering the identity

cos[(2n − 1)α] − cos[(2n + 1)α] ≡ 2 sinα sin 2nα,

show that ifα is not an integer multiple ofπ then

N

∑
n=1

sin(2nα) = 1
2 cotα − 1

2 cosecα cos[(2N + 1)α]. [4]

Deduce that the infinite series
∞
∑
n=1

sin(2
3nπ)

does not converge. [1]

3 The sequencex1, x2, x3, . . . is such thatx1 = 3 and

xn+1 = 2x2
n + 4xn − 2

2xn + 3

for n = 1, 2, 3, . . . . Prove by induction thatxn > 2 for all n. [6]

4 The parametric equations of a curve are

x = cost + t sint, y = sint − t cost.

The arc of the curve joining the point wheret = 0 to the point wheret = 1
2π is rotated about thex-axis

through one complete revolution. Find the area of the surface generated, leaving your result in terms
of π. [7]

5 Use de Moivre’s theorem to show that

sin 5θ = 16 sin5θ − 20 sin3θ + 5 sinθ. [4]

Hence find all the roots of the equation

32x5 − 40x3 + 10x + 1 = 0

in the form sin(qπ), whereq is a positive rational number. [4]
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6 The curveC has equation

y = x2 − 3x − 7
x + 1

.

(i) Obtain the equations of the asymptotes ofC. [3]

(ii) Show that
dy
dx

> 1 at all points ofC. [2]

(iii) Draw a sketch ofC. [3]

7 It is given that

x = t2e−t2 and y = te−t2.

(i) Show that

dy
dx

= 1− 2t2

2t − 2t3
. [3]

(ii) Find
d2y

dx2
in terms oft. [5]

8 Obtain the general solution of the differential equation

d2y

dx2
+ 5

dy
dx

+ 4y = 10 sin 3x − 20 cos 3x. [5]

Show that, for large positivex and independently of the initial conditions,

y ≈ R sin(3x + φ),
where the constantsR andφ, such thatR > 0 and 0< φ < 2π, are to be determined correct to 2 decimal
places. [4]

9 Let

In = ã
1
2π

0
sinn θ dθ,

wheren is a non-negative integer. Show thatIn+2 = n + 1
n + 2

In. [4]

The regionR of thex-y plane is bounded by thex-axis, the linex = π

2m
and the curve whose equation

is y = sin4mx, wherem > 0. Find they-coordinate of the centroid ofR. [6]
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10 The equation

x4 + x3 + cx2 + 4x − 2 = 0,

wherec is a constant, has rootsα, β , γ , δ .

(i) Use the substitutiony = 1
x

to find an equation which has roots
1
α

,
1
β

,
1
γ

,
1
δ

. [2]

(ii) Find, in terms ofc, the values ofα2 + β2 + γ 2 + δ 2 and
1

α2
+ 1

β2
+ 1

γ 2
+ 1

δ 2
. [3]

(iii) Hence find

(α − 1
α

)2

+ (β − 1
β

)2

+ (γ − 1
γ

)2

+ (δ − 1
δ

)2

in terms ofc. [2]

(iv) Deduce that whenc = −3 the roots of the given equation are not all real. [3]

11 The curveC has polar equation

r = a
1+ θ

,

wherea is a positive constant and 0≤ θ ≤ 1
2π.

(i) Show thatr decreases asθ increases. [2]

(ii) The pointP of C is further from the initial line than any other point ofC. Show that, atP,

tanθ = 1+ θ,

and verify that this equation has a root between 1.1 and 1.2. [4]

(iii) Draw a sketch ofC. [3]

(iv) Find the area of the region bounded by the initial line, the lineθ = 1
2π andC, leaving your answer

in terms ofπ anda. [3]
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12 Answer onlyone of the following two alternatives.

EITHER

The linel1 passes through the pointA whose position vector is 3i+ j + 2k and is parallel to the vector
i + j. The linel2 passes through the pointB whose position vector is−i − k and is parallel to the vector
j + 2k. The pointP is onl1 and the pointQ is onl2 andPQ is perpendicular to bothl1 andl2.

(i) Find the length ofPQ. [4]

(ii) Find the position vector ofQ. [5]

(iii) Show that the perpendicular distance fromQ to the plane containingAB and the linel1 is
√

3.
[4]

OR

The linear transformation T :>4 → >4 is represented by the matrixM =


1 1 5 7
3 9 17 25
1 7 7 11
3 6 16 23

.

(i) In either order,

(a) show that the dimension ofR, the range space of T, is equal to 2,

(b) obtain a basis forR.
[5]

(ii) Show that the vector


1
−15
−17
−6

 belongs toR. [3]

(iii) It is given that{e1, e2} is a basis for the null space of T, wheree1 =


14
1

−3
0

 ande2 =


19
2
0

−3

.

Show that, for allλ andµ,

x =


4
−3

0
0

 + λe1 + µe2

is a solution of

Mx =


1
−15
−17
−6

 (∗). [3]

(iv) Hence find a solution of (∗) of the form


α

0
γ

δ

. [2]
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